Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903115

RESUMO

Chlamydia psittaci is a primary zoonotic pathogen with a broad host range causing severe respiratory and reproductive system infection in animals and humans. To reduce the global burden of C. psittaci-associated diseases on animal welfare and health and to control the pathogen spread in husbandry, effective vaccines based on promising vaccine candidate(s) are required. Recently, the caprine C. psittaci AMK-16 strain (AMK-16) demonstrated a high level of protection (up to 80-100%) in outbred mice and pregnant rabbits immunized with these formaldehyde-inactivated bacteria against experimental chlamydial wild-type infection. This study investigated the molecular characteristics of AMK-16 by whole-genome sequencing followed by molecular typing, phylogenetic analysis and detection of main immunodominant protein(s) eliciting the immune response in mouse model. Similarly to other C. psittaci, AMK-16 harbored an extrachromosomal plasmid. The whole-genome phylogenetic analysis proved that AMK-16 strain belonging to ST28 clustered with only C. psittaci but not with Chlamydia abortus strains. However, AMK-16 possessed the insert which resulted from the recombination event as the additional single chromosome region of a 23,100 bp size with higher homology to C. abortus (98.38-99.94%) rather than to C. psittaci (92.06-92.55%). At least six of 16 CDSs were absent in AMK-16 plasticity zone and 41 CDSs in other loci compared with the reference C. psittaci 6BC strain. Two SNPs identified in the AMK-16 ompA sequence resulted in MOMP polymorphism followed by the formation of a novel genotype/subtype including three other C. psittaci strains else. AMK-16 MOMP provided marked specific cellular and humoral immune response in 100% of mice immunized with the inactivated AMK-16 bacteria. Both DnaK and GrpE encoded by the recombination region genes were less immunoreactive, inducing only a negligible T-cell murine immune response, while homologous antibodies could be detected in 50% and 30% of immunized mice, respectively. Thus, AMK-16 could be a promising vaccine candidate for the development of a killed whole cell vaccine against chlamydiosis in livestock.


Assuntos
Infecções por Chlamydia , Chlamydia , Chlamydophila psittaci , Psitacose , Gravidez , Humanos , Feminino , Animais , Camundongos , Coelhos , Chlamydophila psittaci/genética , Filogenia , Cabras , Psitacose/prevenção & controle , Psitacose/veterinária , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/veterinária , Chlamydia/genética , Vacinas Bacterianas
2.
Microorganisms ; 10(7)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35889161

RESUMO

Listeria monocytogenes (Lm), the causative agent for both human and animal listeriosis, is considered to be a rare but potentially fatal foodborne pathogen. While Lm strains associated with current cases of human listeriosis are now being intensely investigated, our knowledge of this microorganism which has caused listerial infection in the past is still extremely limited. The objective of this study was a retrospective whole-genome sequence analysis of the Lm collection strain, 4/52-1953, isolated in the middle of the 20th century from a piglet with listerial neuroinfection. The multi-locus sequence typing (MLST) analysis based on seven housekeeping genes (abcZ, bglA, cat, dapE, dat, ldh, and lhkA) showed that the Lm strain 4/52-1953 was assigned to the sequence type 201 (ST201), clonal complex 69 (CC69), and phylogenetic lineage III. The strain 4/52-1953, similarly to other ST201 strains, probably originated from the ST9, CC69 via ST157. At least eight different STs, ST69, ST72, ST130, ST136, ST148, ST469, ST769, and ST202, were identified as the descendants of the first generation and a single one, ST2290, was proved to be the descendant of the second generation. Among them there were strains either associated with some sporadic cases of human and animal listerial infection in the course of more than 60 years worldwide or isolated from food samples, fish and dairy products, or migratory birds. Phylogenetic analysis based on whole genomes of all the Lm strains available in the NCBI GenBank (n = 256) demonstrated that the strain 4/52-1953 belonged to minor Cluster I, represented by lineage III only, while two other major Clusters, II and III, were formed by lineages I and II. In the genome of the strain 4/52-1953, 41 virulence-associated genes, including the Listeria pathogenicity island 1 (LIPI-1), and LIPI-2 represented by two internalin genes, the inlA and inlB genes, and five genes related to antibiotic resistance, were found. These findings can help to make the emergence of both hyper- and hypovirulent variants, including those bearing antibiotic resistance genes, more visible and aid the aims of molecular epidemiology as well.

3.
Microorganisms ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630478

RESUMO

The emergence of multidrug-resistant (MDR) bacterial strains is one of the significant global challenges with regard to bacterial drug-resistance control. Enterobacter hormaechei organisms belong to the Enterobacter cloacae complex (ECC) and are commonly recognized as causative agents for hospital infections. Recently, a few E. hormaechei MDR strains associated with infection in piglets, calves, and a fox were reported, highlighting the important role of animals and livestock in the emergence and spread of antimicrobial resistance. In this study, the vaginal swab sample from a 5-year-old cow with multiple anamnestic infectious abortions was carefully investigated. The animal was unresponsive to antibiotic therapy recommended by the veterinarian. The MDR bacterial strain isolated from the bovine sample, designated as the Saratov_2019, belonged to Enterobacter hormaechei. The genome-based phylogenetic analysis identified the isolate to be Enterobacter hormaechei subsp. xiangfangensis. The genome of the Saratov_2019 contained a 6364 bp plasmid. Importantly, we revealed the novel sequence type ST1416 and 13 MDR genes correlating with the MDR phenotype in only the chromosome but not the plasmid. These findings indicate that the potential spread of this strain may pose a threat for both animal and human health. The data obtained here support the notion of the important role of livestock in the emergence and spread of antimicrobial resistance, promoting careful investigation of the MDR spectra for livestock-related bacterial isolates. To the best of our knowledge, this is the first report on the association of E. hormaechei subsp. xiangfangensis with the infection of the reproductive system in cattle.

4.
Data Brief ; 29: 105190, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071972

RESUMO

Chlamydiae are obligate intracellular bacteria globally widespread across humans, wildlife, and domesticated animals. Chlamydia psittaci is a primarily zoonotic pathogen with multiple hosts, which can be transmitted to humans, resulting in psittacosis or ornithosis. Since this pathogen is a well-recognized threat to human and animal health, it is critical to unravel in detail the genetic make-up of this microorganism. Though many genomes of C. psittaci have been studied to date, little is known about the variants of chlamydial organisms causing infection in Russian livestock. This research is the first de novo genome assembly of the C. psittaci strain Rostinovo-70 of zoonotic origin that was isolated in Russian Federation. The results were obtained by using standard protocols of sequencing with the Illumina HiSeq 2500 and Oxford Nanopore MinION technology that generated 3.88 GB and 3.08 GB of raw data, respectively. The data obtained are available in NCBI DataBase (GenBank accession numbers are CP041038.1 & CP041039.1). The Multi-Locus Sequence Typing (MLST) showed that the strain Rostinovo-70 together with C. psittaci GR9 and C. psittaci WS/RT/E30 belong to the sequence type (ST)28 that could be further separated into two different clades. Despite C. psittaci Rostinovo-70 and C. psittaci GR9 formed a single clade, the latter strain did not contain a cryptic plasmid characteristis to Rostinovo-70. Moreover, the genomes of two strains differed significantly in the cluster of 30 genes that in Rostinovo-70 were closer to Chlamydia abortus rather than C. psittaci. The alignment of the genomes of C. psittaci and C. abortus in this area revealed the exact boarders of homologous recombination that occurred between two Chlamydia species. These findings provide evidence for the first time of genetic exchange between closely related Chlamydia species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...